-数学中的四大天王,数学史上的四大天才

数学中的四大天王,数学史上的四大天才

数学,因为其无与伦比的魅力,吸引了大批才智超群之士献身其中.义因为其无法想象的威力,成就了一代义一代大师的伟业.在世界文明史上,产生了难以计数的数学大师,他们的思想、方法以及对宇宙人生的领悟,成为人类的航标,

贡献最为巨大的,当属下列四位,他们被称为数学史上的“四大天王”.

1.数学之神——阿基米德

阿基米德(公元前287年~公元前212年),伟大的古希腊哲学家、数学家、物理学家.他的思想是如此超前,他的成就是如此巨大,以至于在他的时代和他以后的一千多年时间里,全世界最聪明的人都难以望其项背,只能对他的著作进行讨论和注释,而毫无推进的能力.

阿基米德出生在古希腊西西里岛东南端的叙拉古城.当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城.但是另一方面,意大利半岛上新兴的罗马帝国,也正不断地扩张势力;北非也有新的国家迦太基兴起.阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所.

阿基米德流传于世的数学著作有10余种.他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积,在那里乙腈明显地有了微积分的萌芽.他的著作,体例深受欧几里得《几何原本》的影响,先是设立若干定义和假设,再依次证明.他写出了《论球和网柱》、《网的度量》、《抛物线求积>、《论螺线》、《论锥体和球体》、《沙的计算》等数学著作,还有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作.

据说罗马兵人城时,统帅马塞拉斯冉于敬佩阿基米德的才能,曾下令不准伤害这位贤能.而阿基米德似乎并不知道城池已破,义重新沉迷于数学的深思之中.

一个罗马士兵突然出现在他面前,命令他到马塞拉斯那里去,遭到阿基米德的严词拒绝,于是阿基米德不幸死在了这个士兵的刀剑之下.

另一种说法是,罗马士兵闯入阿基米德的住宅,看见一位老人在地上埋头作几何图形(还有一种说法他在沙滩上面图),士兵将图踩坏,阿基米德怒斥士兵:“不要弄坏我的圆!”士兵拔im短剑,这位旷世绝伦的大科学家,竟如此地在愚昧无知的罗马士兵手下丧生了.

马塞拉斯对于阿基米德的死深感悲痛.他将杀死阿基米德的士兵当作杀人犯予以处决,并为阿基米德修了一座陵墓,在墓碑上根据阿基米德生前的遗愿,刻上了“圆柱容球”这一几何图形.马塞拉斯给阿基米德立起的墓碑,无形中也成了留给他白己的纪念碑.后世的人们从中看到了一位尊重知识、尊重人才的统帅,虽然他是入侵者,但是显然有别于那些肆意戕害文化的刽子手.

阿基米德才华卓绝,品格高尚,为历代的人们树立了一座光芒万丈的丰碑.

2.上帝之光——牛顿

传说牛顿小的时候把风车的机械原理摸透后,白己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望而不可即的位置.老鼠想吃玉米,就不断地跑动,于是轮子不停地转动.义一次他放风筝时,在绳子上悬挂着小灯,夜间村里人看到惊疑是彗星出现.他还制造了一个小水钟,每天早晨,小水钟会自动滴水到他的脸上,催他起床.他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻面的日晷,用以验看日影的移动.

牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象有好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等.他还分门别类地记读书笔记,义喜欢别出心裁地做些小T具、小发明和小试验.

1 661年,1 9岁的牛顿以减费生的身份进入剑桥大学三一学院.在那里他遇到了一位影响他一生的好老师伊萨克·巴罗.这位博学的科学家独具慧眼,看出了牛顿具有深邃的观察力、敏锐的理解力.于是将自己的数学知识,包括计算曲线图形面积的方法,全部传授给牛顿,并把牛顿引向了近代自然科学的研究领域.

1665–1666年,严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校停课,牛顿因此而于1 665年6月离校返乡.

在家乡居住的兩年中,牛顿以旺盛的精力从事科学创造,并关心自然哲学问题.他的三大成就:微积分、万有引力、光学分析的思想都是在这时孕育成形的.可以说此时的牛顿已经开始着手描绘他一生大多数科学创造的蓝图,奠定了他作为伟人的全部基础,那时他刚刚二十岁m头.

1 667年牛顿返回剑桥大学,10月1日被选为三一学院的仲院侣(初级院委),翌年3月16日获得硕士学位,同时成为正院侣(高级院委).为了提携牛顿,巴罗于1 669年10月27日辞去了教授之职,让26岁的牛顿晋升为数学教授,并主持卢卡斯讲座(这在当时是极高的荣誉).巴罗让贤,这在科学史上一直被传为佳话.

牛顿的成就甚多,微积分、光学、古典力学,任何一项皆能彪炳史册.微积分的创立是他最卓越的数学成就.它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿之前已经得到人们的研究,但牛顿超越了前人,他站在了更高的高度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元.微积分被称为“人类思维最光辉的成就”,它在各门自然和社会科学中几乎都有应用,而且作用非常强大.牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼兹早一些,但是莱布尼兹所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早.以致后来产生了微积分发明权的激烈争论,甚至闹到英伦三岛的数学家集体不看欧洲大陆的相关论文.等到后来争论平息了,英国的数学水平已经远远落后于欧洲大陆.因为大陆的人用上了莱布尼兹发明的一整套简单明了的数学符号,使得微积分这门新兴学科变得容易记忆和运算.

许多介绍牛顿的书上都介绍过牛顿与苹果的传奇故事:一天,牛顿坐在一棵苹果树下看书及思考问题时,有一个苹果落了下来.这位当时年仅23岁的学生立刻想到,苹果一定是被地球的引力拉下来的,此后,经过多年努力,他终于完成了万有引力定律的阐述、数学证明与公式推导,但后来经专家考证,当时的苹果并没有砸到牛顿.这在牛顿的日记中有所提及,但是人们还是愿意相信牛顿被砸到了,这无伤大雅还颇为有趣.

牛顿的T作极大地改变了人类的物质和精神状态,就影响力而言,他是唯一能与基督比肩的凡人.一位诗人这样写道:“世界在黑暗之中,上帝说:让牛顿降生吧.于是一切都变得光明.”

牛顿除了与莱布尼兹的微积分优先权争论外,还与胡克发生过万有引力定律发明权的争论.在对待胡克的事情上,身为英国皇家学会会长的牛顿,利用公权力做了一些不太光彩的事情.晚年的牛顿热衷于在官场周旋,做了皇家造币厂的厂长.虽然他的贡献足以使他成为人类有史以来最伟大的科学家,但是对于他的人品,历来就颇有争议.

3.数学王子——高斯

高斯是德国著名数学家、物理学家、天文学家及大地测量学家,其成就遍及数学的各个领域,在数论、微分几何、非欧几何、超几何级数、复变函数论以及椭网函数论等方面均有开创性贡献.他十分注重数学的应用,并且在天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究.

高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.

高斯在小学时用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和为(1 100,2 99,3 98,…),同时得到结果:5 050.这一年,高斯9岁.但是据更为精细的数学史书记载,高斯所解的并不是1加到100那么简单,而是81 297 81 495 — 100 899(公差198,项数100)的一个等差数列.

当高斯12岁时,已经开始怀疑欧氏几何学中的基础证明.当他1 6岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学(可惜未予公开发表).他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论.

虽然高斯作为超一流的数学家而闻名于世,但他基本上不是一个受欢迎的老师,他不能让学生明白他的思想,以致做他的学生显得很累,还很难看到希望.尽管如此,他为数不多的学生中,也出现了大师级的数学家,如后来闻名于世的戴德金和黎曼.戴德金在实数理论上有开创性贡献,戴德金分割意义非凡;黎曼则创立了黎曼几何学,那是爱因斯坦相对论的基础.可见,能够和高斯交流的学生,绝非凡品.

4.大家的导师——欧拉

欧拉是18世纪最优秀的数学家,他是历史上最伟大的数学家之一,也是世界最杰出的科学家之一.欧拉的数学和科学成果简直多得令人难以相信,他写了三十二部学术著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文.总计起来,他的科学论著有七十多卷.欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域.直到今天,在大学理科教材上也频繁出现欧拉的大名.欧拉还是个文辞优美(虽然有点过分虔奉宗教)的作家.他为了向腓特烈的侄女安哈尔特德始公主介绍力学、物理光学、天文学、声学等课程,写了颇受赞誉的《致一位德国公主的信》.这些著名的信流传很广,被印成了7种文字的单行本.

欧拉始终保持着充沛的精力和清醒的头脑,直到临死的那一秒钟.那是在1783年9月18日,他77岁的时候.这天下午他当作消遣地推算了气球升高的定律——照例是在他的石板上,尔后,与雷克塞尔和家人吃了晚饭.“赫歇耳的行星”(天王星)那时刚刚被发现,欧拉写出了他对这个行星轨道的计算,过了一会儿,他让他的孙子进来.就在喝着茶跟孩子玩的时候,他中风发作.手中烟斗掉了,只说出一句话“我要死了”,欧拉便停止了生命和计算.

欧拉的风格是很高的,拉格朗日是稍后于欧拉出生的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年轻的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(曾被拿破仑延为老师)曾说过:“读读欧拉、读读欧拉,他是我们大家的老师!”

高斯曾说:“研究欧拉的著作永远是了解数学的最好方法.”

欧拉杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,世所罕匹.他在数学、物理、天文、建筑以至音乐、哲学方面都取得了辉煌的成就.哥德巴赫猜想也是在他与哥德巴赫的通信中提出来的.他还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论.

欧拉一生能取得如此辉煌成就的原因在于:惊人的记忆力;精神超然,不染凡尘;镇静自若,孜孜不倦;醉心数学,心无旁骛.据说他能记住前100个正整数的前6次方,能记忆4位数的对数表和三角函数表.欧拉是在品格、学术等各个方面都值得我们缅怀的伟大人物,他的大家庭也和谐美满、其乐融融.

结束语 从个体来看,这四位伟大的人物各有各的禀性.高斯冷峻孤傲,不喜与人交流,像一尊令人望而生畏的巨大铜像;牛顿善于经营,很在意名望与地位,有些行为被人诟病;欧拉和蔼友善,对人真诚,奖掖后进,是一位让人如沐春风的导师;阿基米德则是一个传说.

高斯的著作,立论严谨、结构完美.他舍弃了结论发现的过程,呈现出来的都是最终的精致绝伦的学术形态,很难读懂.有人曾说:“高斯像一只狡猾的狐狸,总是用尾巴扫去身后的足迹.”而高斯本人的态度是,“在盖好大楼以后,脚手架当然要拆掉”.

牛顿的著作,规模宏大、立意高远.他不在乎细枝末节的雕琢,呈現出来的是一片可以任人驰骋的广阔天地.所以,他的著作引领性强,粗糙处亦多(这是所有学科初创时难免的,不是牛顿的缺点).牛顿的名利心太重,对同事刻薄,对上司逢迎,让人有不愿言说的感觉.

欧拉就是专为数学而生,也专为数学而活的人,他有许多的机会获得更大的名利,但他不为所动.他的心里只有数学,他是一个纯真的人、一个高尚的人、一个甘愿牺牲自己成全别人的人.他的著作,条理清晰、推理自然、文辞浅显优美,读他的书就像是与一位知心朋友闲谈.所以,他对青年人的帮助最大,他启发了无数的人,而从没有打击过任何一个,作为一介教师,我敬佩他之处甚多.

阿基米德远远超出他的时代,如果单对他的著作进行评价,你说那些结果出现在18世纪也会有人相信,他制造抛石机、滑轮、杠杆,参加抵抗入侵的战斗,俨然是叙拉古的保护神,

如果可以选择,我愿意在阿基米德的指引下,趋欧拉之门,为人室弟子.用心读高斯的各类专著,悟牛顿的绝对时空.

称为数学之神的科学家是哪位科学家?

阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

称为数学之神的科学家是哪位科学家?

被人们称为数学之神的是阿基米德科学家.

发表回复

您的电子邮箱地址不会被公开。